At atmospheric pressures carbon dioxide (CO₂) is a colourless, odourless and non-conductive gas capable of penetrating quickly and efficiently the area to be protected. Its density is approximately 50% greater than the density of air. CO₂ is stored in high-pressure cylinders as liquefied gas.

CO₂ has been used effectively for many years, not only in fire protection but also in other commercial applications. Although the use of CO₂ as extinguishing agent declined with the introduction of halons, it is still widely used for fire protection, specially since Montreal Protocol was introduced (where bases were established to ban the use of Halon extinguisher).

CO₂ extinguishes fires by physical means according to two main mechanisms. The first one is by decreasing the oxygen level inside the enclosure from 21% to a level below 15%. Most fires are unable to maintain combustion at such low levels. The second mechanism is by means of cooling and heat absorption.

When dealing with the protection of occupied areas, consideration shall be given to the fact that if CO₂ is inhaled, even in low concentrations, it may lead to asphyxia. Under required safety precautions, CO₂ has been effectively applied for over 50 years to protect areas such as transformer rooms, archives, electrical hazards, record stores and computer rooms. In some countries regulations ban automatic control of CO₂ systems for the protection of occupied areas.
In other countries it is allowed, as long as the system and protected area have the relevant safety devices fitted.

Thanks to their experience in the field of fire protection gained through CO₂ systems, LPG fire extinguishing systems are now installed in more than 40 countries in Europe, America, Asia and Africa.

LPG range of CO₂ systems include two types of valves fully developed by LPG, approved by the most renowned independent organizations.

LPG 128 valve is fitted on pilot cylinder and allows electrical actuation using a solenoid or pyrotechnical charge.

LPG 110 valve is fitted on auxiliary cylinders and activated using the pneumatic pressure provided by pilot cylinder. They offer greater flexibility for all types of actuation and release systems currently in use in the market, even allowing combinations of several of them. Incorporated in their design protection elements against accidental actuation due to micro leakages. They also allow checking and maintenance of all critical elements contained in a fixed extinguishing system, at the time of commissioning and later system preventive maintenance, thus preventing the risk of accidental discharge.

To check for weight loss of the extinguishing agent in cylinders, LPG has available a charge cellular weighing system, which allows continuous control of condition of charge of cylinders containing CO₂.

LPG CO₂ system and its components are certified by VdS and VNIIPO.

Physical Properties

- **Chemical name:** Carbon Dioxide
- **Chemical formula:** CO₂
- **Molecular weight:** 44.01
- **Triple point Temperature:** -55.60°C
- **Triple point Pressure:** 517.8 kPa
- **Liquid density at 20°C:** 777 kg./m³
- **Critical temperature:** 31.0°C
- **Critical pressure:** 73.82 bar
- **Pressure at 21°C:** 58.8 bar
- **Vapour pressure at 20°C:** 57.2 bar
- **Maximum filling density:** 0.75 kg./l.
- **Air relative density:** 1.5
- **Deep seated electrical fire concentration Vol < 57m³:** 1.6 kg./m³
- **Deep seated electrical fire concentration Vol > 57m³:** 1.33 kg./m³
- **Archive extinguishing concentration:** 61% (2.0 kg./m³)
- **Ozone depletion potential:** 0
- **Greenhouse effect potential:** 1
- **Surface fire design concentration:** 34%